YEAR 3 FORCES AND MAGNETS PLANNING

Class:
Term: Spring 1 and 2
Subject: Science
Unit: Forces and Magnets

Differentiation and support (Detailed differentiation in weekly plans.)
SEN: write up investigations on writing frames. Support from more able partners in mixed ability work. Additional adult support.

GT: provide headings for experiment sections. Send off to experiment sooner than rest of group. Provide with equipment, but provide less scaffolding on how to conduct the experiment. Encourage conclusions that draw on scientific knowledge and enquiry skills.

English: writing up experiments in sequence using technical language
Maths: measuring length and volume, drawing result tables and charts
ICT: using simulations
D\&T: reasons for using different materials

W	Learning objective	Teaching activities	Resources	Assessment: Success Criteria	Lesson Evaluation
1	Self-assess knowledge of forces and magnets (15 mins) Describe the direction of forces between magnets or between a spring and someone compressing it Recognise that a force acts in a particular direction (30 mins)	Children complete a mind map on what they already know about forces and magnets Intro: Remind children of the difference between a push and a pull. Give them examples and ask them to say if it is a push or a pull e.g. tennis racket hitting a ball, child on a swing, person walking a dog. Give children magnets and springs to experiment with Think, pair, share what they find out. Take ideas as a class and give children scientific vocab to describe with. Explain how like poles repel and unlike poles attract, emphasising the vocabulary Independent work: Complete worksheet: - Label direction of force on the four possible combinations of magnets i.e. North - North, North - South, South - South and South - North. - Complete a sentence under each combination of magnets to say whether the magnets will attract or repel - Draw a diagram of a spring in a normal state, stretched state and compressed state and label the pushes and pulls Plenary: Go through correct answers to the worksheet on the IWB and address any misconceptions Revise vocabulary e.g. compress / stretch, push / pull etc	Mind maps Magnets Elastic bands / springs Worksheets	Formative assessment exercise MUST: experiment with magnets and springs SHOULD: label pushes / pulls and attraction / repulsion on diagrams COULD: use scientific ideas and language to express themselves	

To access the complete version of this Forces and Magnets planning, and all of the resources to go with it, visit

> http://www.saveteacherssundays.com/science/year-3/330/

